Case Studies on Mode-I Fatigue Crack Propagation Using Fully Unstructured Finite Elements

O. Demir, E. Nart, C. Kurtiş, A. O. Ayhan^{*} Sakarya University Faculty of Engineering, Mechanical Engineering Department Sakarya, TURKEY ^{*}ayhan@sakarya.edu.tr

Outline

Motivation and Needs for Crack Insertion Techniques
Description of Crack Insertion Procedure
Case Studies
Mode-I surface crack in finite thickness plate

□ Mode-I surface crack in a rail base

> Problem Description

- > Insertion of Crack into uncracked structure
- > Stress Intensity Factor Solutions
- Prediction of Crack Propagation Patterns and Lives
- > Comparison with Results in Literature

Summary and Conclusions

Motivation

- Modeling of three dimensional cracks
- Generating its finite element mesh

Modeling and Meshing

Depending on the complexity of geometry

Appreciable time and effort

Ref: [1] http://wildeanalysis.co.uk/cfd/software/ansys/workbench/meshing

Crack Insertion Procedure

Process Map of Crack Insertion Procedure

Problem Description

A plate made of martensitic P91 steel containing a surface crack was used in Reytier experiment. The fracture problem data are taken from the literature (Reytier, 2004).

2W = 350 mm,2H = 590 mmt = 30 mma = 6.9 mmc = 12.4 mm

Prediction of crack is attempted using crack growth law, e.g., Paris-Erdogan law;

$$\frac{da}{dN} = C(\Delta K)^n \qquad \text{C=7.1*10}^{-7} \frac{mm}{cycle(MPa\sqrt{m})^n}$$

n=1.85,

da/dN is in mm/cycles and

 ΔK is in MPa·m^{1/2}

•Ref [2]: Reytier, M., "Fatigue crack growth in large cracked plates of martensitic P91 steel at 550 °C", Power Plant Oper Mainten Mater Issue., 3(2):1–10; 2004.

Insertion of Crack into uncracked structure

Crack mouth lines

Crack mouth line, boundaries of the outer free-surface are regenerated and meshed by using Triangle[©] code

Volume meshing is performed with tetrahedral elements including refinement near crack front line by using three-dimensional meshing software ,Tetgen[©]

Stress Intensity Factors (SIFs) are computed along the crack front using FCPAS

Sectional view of crack region

Fracture Analysis and Crack Propagation

Stress Intensity Factor Solutions

Mode-I stress intensity factors during crack growth, (a) Variation as a function of nondimensional crack front position, (b) At the crack depth point, $\Delta \sigma = 1$ MPa.

Prediction of Crack Propagation Patterns and Lives

Crack propagation analyses are also performed using modules in FCPAS (<u>Fracture and Crack Propagation Analysis Software</u>).

Comparison of crack propagation patterns between observed experimentally and numerically.

Variation of crack length at the depth point as a function of loading cycles.

Experimentally observed results are also given.

•**Ref** [2]: Reytier, M., "Fatigue crack growth in large cracked plates of martensitic P91 steel at 550 °C", Power Plant Oper Mainten 10 Mater Issue., 3(2):1–10; 2004.

Crack Half Length, c (m)

Case Study : Mode-I surface crack in a rail base

Problem Description

Related Standart: EN 13674-1 / UIC 860-0

Pure bending moment is applied

Assessment of Fatigue Cracks in Rails The initial crack dimensions are; a = 0.5 mm and c = 0.5 mm.

Material constants are;

C=3.3*10⁻¹⁰
$$\frac{mm}{cycle(MPa\sqrt{m})^n}$$
, n=2.63

da/dN is in mm/cycles

•Ref [3]: Kotsikos, G., Grasso, M., "Assessment of Fatigue Cracks in Rails ", Procedia - Social and Behavioral Sciences 00, 000– 11 000; 20011.

Stress Intensity Factor Solutions

Variation of mode-I stress intensity factors during crack growth as a function of crack depth.

Prediction of Crack Propagation Patterns and Lives

Number of Loading Cycles

Summary and Conclusions

In this study, applications are presented that demonstrate the crack insertion procedure for two different fatigue crack propagation problems.

- It is shown that the procedure described above can be efficiently applied to mode-I fatigue crack propagation problems using fully unstructured mesh by employing a crack insertion procedure and tetrahedral enriched elements.
- Enriched finite elements used in FCPAS allow computation of SIFs and simulation of crack growth in threedimensional structures accurately and efficiently
- Computed SIFs and predicted crack propagation patterns and lives using FCPAS agree well with

experimental failure observations in literature

The presented procedure can be extended to mixed-mode crack propagation problems that involve growth of

crack surfaces in a non-planar manner.

 ✓ Authors are thankful to The Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support during FCPAS Project.